SISTEMAS DE ECUACIONES LINEALES: MÉTODO DE GAUSS

Ejercicio nº 1.-

Pon un ejemplo, cuando sea posible, de un sistema de dos ecuaciones con tres incógnitas que sea:

- a) Compatible determinado
- b) Compatible indeterminado
- c) Incompatible

Justifica en cada caso tus respuestas.

Ejercicio nº 2.-

a) Razona si los siguientes sistemas son equivalentes o no:

I:
$$\begin{cases} x - 3y + 4z = 7 \\ 3x + 2z = 0 \end{cases}$$
 II:
$$\begin{cases} x = -3z \\ y = 1 \\ z = 3z \end{cases}$$

b) Añade una ecuación al sistema I, de modo que el nuevo sistema resultante sea incompatible. Justifica tu respuesta.

Ejercicio nº 3.-

a) Explica si el siguiente sistema de ecuaciones es compatible o incompatible:

$$\begin{cases} 3x - 2y + 4z = 6 \\ -2x + 4y - z = 3 \\ x + 2y + 3z = 1 \end{cases}$$

b) ¿Podríamos conseguir que fuera compatible determinado, suprimiendo una de las ecuaciones? Razónalo.

Ejercicio nº 4.-

Dado el sistema de ecuaciones:

$$2x - y + z = 5$$

$$-x + 2y = 3$$

Si es posible, añade una ecuación de modo que el nuevo sistema resultante sea:

- a) Incompatible
- b) Compatible indeterminado

Justifica tus respuestas.

Ejercicio nº 5.-

a) Resuelve el sistema de ecuaciones:

$$\begin{cases} -x+y=1\\ 3x-y=1 \end{cases}$$

- b) Añade una ecuación al sistema anterior de modo que el sistema resultante sea:
 - I) Compatible determinado
 - II) Compatible indeterminado
 - III) Incompatible

Ejercicio nº 6.-

Dados los siguientes sistemas de ecuaciones:

a)
$$x-2y=0$$

 $3x-y=5$
b) $3x-z=4$
 $y+3x=2$

b)
$$3x - z = 4$$

$$3x-y=5$$

$$y+3x=2$$

$$x-y=1$$

Resuélvelos e interprétalos geométricamente.

Ejercicio nº 7.-

Resuelve los siguientes sistemas y haz una interpretación geométrica de los mismos:

a)
$$3x-2y=5$$

 $x+4y=4$
b) $x+2z=3$
 $x+y=2$

b)
$$x + 2z = 3$$

$$x+4y=4$$

$$x + y = 2$$

$$-x-2y=-3$$

Ejercicio nº 8.-

Resuelve e interpreta geométricamente el siguiente sistema de ecuaciones:

$$2x - y + z = 3$$

$$x+2y-z=4$$

$$x - 8y + 5z = -6$$

Ejercicio nº 9.-

Resuelve el siguiente sistema e interprétalo geométricamente:

$$x + y + z = 1$$

$$2x -3z = 5$$

$$2y+5z=2$$

Ejercicio nº 10.-

Resuelve e interpreta geométricamente el sistema:

$$-x+3y-z=4$$

$$x+4y=5$$

$$2x-6y+2z=3$$

Ejercicio nº 11.-

Resuelve los siguientes sistemas, utilizando el método de Gauss:

a)
$$-3x + y + z = 1$$

 $x - 2y + z = 4$
 $-x + y - 3z = -7$

$$\begin{vmatrix}
-3x + y + z = 1 \\
x - 2y + z = 4 \\
-x + y - 3z = -7
\end{vmatrix}$$
b)
$$2x - y + z = 3 \\
3x + y - z = -3 \\
x - 3y + 3z = 9 \\
2x + 4y - 4z = -12$$

Ejercicio nº 12.-

Resuelve, por el método de Gauss, los siguientes sistemas de ecuaciones:

a)
$$2x+y-z=6$$

 $x-y+2z=-1$
 $-x+3y=1$

b) $x-y+z+t=0$
 $x+y+z-t=2$

b)
$$x-y+z+t=0$$

 $x+y+z-t=2$
 $x-y-z+t=2$

Ejercicio nº 13.-

Resuelve, por el método de Gauss, los sistemas:

a)
$$-3x+y-z=-4$$

 $5x-2y+z=6$
 $-x+y+3z=0$

a)
$$-3x+y-z=-4$$

 $5x-2y+z=6$
 $-x+y+3z=0$
b) $x+2y+z+t=3$
 $-x+y+2t=-1$
 $-x+7y+2z+8t=1$

Ejercicio nº 14.-

Resuelve estos sistemas, mediante el método de Gauss:

a)
$$5x-y+3z=-6$$

 $x+3y-z=10$
 $2x-y+4z=-2$

$$5x - y + 3z = -6$$

$$x + 3y - z = 10$$

$$2x - y + 4z = -2$$
b)
$$2x - y + z = 5$$

$$3x + 2y = 1$$

$$-x + 4y - 2z = -9$$

$$6x + 11y - 3z = -11$$

Ejercicio nº 15.-

Utiliza el método de Gauss para resolver los sistemas:

a)
$$4x + y - 2z = -3$$

$$4x + y - 2z = -3$$

$$3x - y + 4z = -2$$

$$-x + y + z = 5$$
b) $-x + y - z = -2$

$$x - y + 2z = 4$$

$$x + z + t = 3$$

$$x + z + t = 3$$

$$-x+y+z=5$$

$$x + 2z + t = 1$$

Ejercicio nº 16.-

Discute, y resuelve cuando sea posible, el siguiente sistema de ecuaciones:

$$x-5y-z=-4$$

$$x - y + z = 6$$

$$3x-5y+az=31$$

Ejercicio nº 17.-

Discute en función del parámetro, y resuelve cuando sea posible:

$$x + 5y - 6z = 19$$

$$3x-6y+az=-16$$

$$x - z = 1$$

Ejercicio nº 18.-

Discute, y resuelve cuando sea posible, el sistema:

$$2x+3y+5z=8$$

$$2x + 2y + mz = 6$$

$$x+y+2z=3$$

Ejercicio nº 19.-

Dado el siguiente sistema de ecuaciones, discútelo y resuélvelo para los valores de m que lo hacen compatible:

$$2x - y - 17z = 0$$

$$x+2y+mz=5$$

$$x -5z = 1$$

Ejercicio nº 20.-

Discute el siguiente sistema en función del parámetro *a*, y resuélvelo cuando sea posible:

$$2x-5y+(a+5)z=0$$

$$3x+3y -z=0$$

$$3x+4y +6z=0$$

Ejercicio nº 21.-

Disponemos de tres lingotes de distintas aleaciones de tres metales A, B y C. El primer lingote contiene 20 g del metal A, 20 g del B y 60 del C. El segundo contiene 10 g de A, 40 g de B y 50 g de C. El tercero contiene 20 g de A, 40 g de B y 40 g de C. Queremos elaborar, a partir de estos lingotes, uno nuevo que contenga 15 g de A, 35 g de B y 50 g de C.

¿Cuántos gramos hay que coger de cada uno de los tres lingotes?

Ejercicio nº 22.-

Por un rotulador, un cuaderno y una carpeta se pagan 3,56 euros. Se sabe que el precio del cuaderno es la mitad del precio del rotulador y que, el precio de la carpeta es igual al precio del cuaderno más el 20% del precio del rotulador. Calcula los precios que marcaba cada una de las cosas, sabiendo que sobre esos precios se ha hecho el 10% de descuento.

Ejercicio nº 23.-

Una compañía fabricó tres tipos de muebles: sillas, mecedoras y sofás. Para la fabricación de cada uno de estos tipos necesitó la utilización de ciertas unidades de madera, plástico y aluminio tal y como se indica en la tabla siguiente. La compañía tenía en existencia 400 unidades de madera, 600 unidades de plástico y 1 500 unidades de aluminio. Si la compañía utilizó todas sus existencias, ¿cuántas sillas, mecedoras y sofás fabricó?

	MADERA	PLÁSTICO	ALUMINIO
SILLA	1 unidad	1 unidad	2 unidades
MECEDORA	1 unidad	1 unidad	3 unidades
SOFÁ	1 unidad	2 unidades	5 unidades

Ejercicio nº 24.-

En una residencia de estudiantes se compran semanalmente 110 helados de distintos sabores: vainilla, chocolate y nata. El presupuesto destinado para esta compra es de 540 euros y el precio de cada helado es de 4 euros el de vainilla, 5 euros el de chocolate y 6 euros el de nata. Conocidos los gustos de los estudiante, se sabe que entre helados de chocolate y de nata se han de comprar el 20% más que de vainilla.

- a) Plantea un sistema de ecuaciones lineales para calcular cuántos helados de cada sabor se compran a la semana.
- b) Resuelve, mediante el método de Gauss, el sistema planteado en el apartado anterior.

Ejercicio nº 25.-

En una reunión hay 22 personas, entre hombres, mujeres y niños. El doble del número de mujeres más el triple del número de niños, es igual al doble del número de hombres.

- a) Con estos datos, ¿se puede saber el número de hombres que hay?
- b) Si, además, se sabe que el número de hombres es el doble del de mujeres, ¿cuántos hombres, mujeres y niños hay?

SOLUCIONES: SISTEMAS DE ECUACIONES LINEALES:

Ejercicio nº 1.-

Pon un ejemplo, cuando sea posible, de un sistema de dos ecuaciones con tres incógnitas que sea:

- a) Compatible determinado
- b) Compatible indeterminado
- c) Incompatible

Justifica en cada caso tus respuestas.

Solución:

- a) Si el sistema tiene menos ecuaciones que incógnitas, no puede ser compatible determinado; con solo dos datos (ecuaciones) no podemos averiguar tres incógnitas.
- b) Por ejemplo:

$$x + y + z = 3$$
 tiene infinitas soluciones, que serían de la forma:

$$x = 1 + \lambda$$
, $y = 2 - 2\lambda$, $z = \lambda$, con $\lambda \in \mathbb{R}$

c) Tendrían que ser dos ecuaciones contradictorias. Por ejemplo:

$$x+y+z=3$$
 es incompatible; no se pueden dar las dos ecuaciones a la vez. $x+y+z=1$

Ejercicio nº 2.-

a) Razona si los siguientes sistemas son equivalentes o no:

$$I: \begin{cases} x-3y+4z=7 \\ 3x+2z=0 \end{cases} \qquad II: \begin{cases} x=-2z \\ y=1 \\ z=3 \end{cases}$$

b) Añade una ecuación al sistema I, de modo que el nuevo sistema resultante sea incompatible. Justifica tu respuesta.

Solución:

a) El segundo sistema es compatible determinado. Tiene como única solución (-2, 1, 3), que también es solución del sistema I.

Sin embargo, el sistema I tiene, además de (-2, 1, 3), infinitas soluciones más, es compatible indeterminado. Por tanto, los dos sistemas no son equivalentes.

b) Para que sea incompatible, debemos añadir una ecuación de la forma:

$$a(x-3y+4z)+b(3x+2z)=k$$
, con $k \ne 7a$

Por ejemplo, si tomamos a = 1, b = 1:

$$4x - 3y + 6z = 3$$

Añadiendo esta ecuación, el nuevo sistema es incompatible.

Ejercicio nº 3.-

a) Explica si el siguiente sistema de ecuaciones es compatible o incompatible:

$$\begin{cases} 3x - 2y + 4z = 6 \\ -2x + 4y - z = 3 \\ x + 2y + 3z = 1 \end{cases}$$

b) ¿Podríamos conseguir que fuera compatible determinado, suprimiendo una de las ecuaciones? Razónalo.

Solución:

- a) Observamos que la tercera ecuación es suma de las dos primeras, salvo en el término independiente que, en lugar de un 9, es un 1. Por tanto, la tercera ecuación contradice las dos primeras. El sistema es incompatible.
- b) No. Si suprimimos una de las ecuaciones, obtendremos un sistema con tres incógnitas y solo dos ecuaciones. Este nuevo sistema podría ser compatible indeterminado (en este caso lo sería), pero no compatible determinado.

Ejercicio nº 4.-

Dado el sistema de ecuaciones:

$$2x - y + z = 5$$

$$-x + 2y = 3$$

Si es posible, añade una ecuación de modo que el nuevo sistema resultante sea:

- a) Incompatible
- b) Compatible indeterminado

Justifica tus respuestas.

Solución:

a) Una ecuación que haga el sistema incompatible ha de ser de la forma:

$$a(2x-y+z)+b(-x+2y)=k$$
, con $k \ne 5a+3b$

Si tomamos, por ejemplo, a = 1, b = 1, tenemos:

$$x+y+z=4$$

Añadiendo esta ecuación, el sistema es incompatible.

b) Para que sea compatible indeterminado, la ecuación que añadamos será de la forma:

$$a(2x-y+z)+b(-x+2y)=5a+3b$$
 (una combinación lineal de las dos que tenemos)

Si tomamos, por ejemplo, a = 1, b = 1, quedará:

$$x+y+z=8$$

Añadiendo esta ecuación, el sistema es compatible indeterminado.

Ejercicio nº 5.-

a) Resuelve el sistema de ecuaciones:

$$\begin{cases} -x + y = 1 \\ 3x - y = 1 \end{cases}$$

- b) Añade una ecuación al sistema anterior de modo que el sistema resultante sea:
 - I) Compatible determinado
 - II) Compatible indeterminado
 - III) Incompatible

Solución:

a)
$$-x+y=1$$
 Sumando: $2x=2 \rightarrow x=1$
 $3x-y=1$ Sustituyendo $x=1$ en la 1^a ecuación: $-1+y=1 \rightarrow y=2$

La solución del sistema es x = 1, y = 2. Tenemos dos rectas que se cortan en el punto (1, 2).

- b) I) Si añadimos una ecuación que sea combinación lineal de las dos que tenemos, el nuevo sistema seguirá siendo compatible determinado. La nueva recta pasaría también por
- (1, 2). La solución del sistema seguirá siendo la misma. Por ejemplo, si sumamos las dos ecuaciones que tenemos, obtenemos 2x = 2.

Añadiendo esta ecuación, seguirá siendo compatible determinado (y con la misma solución).

- II) Es imposible, pues las dos rectas que tenemos solo tienen en común el punto (1, 2). Añadiendo otra ecuación no podemos conseguir que estas dos rectas se corten en más puntos.
- III) Para que fuera incompatible, tendríamos que añadir una ecuación que contradijera las dos que tenemos; es decir, de la forma:

$$a(-x+y)+b(3x-y)=k$$
, con $k \neq a+b$

Por ejemplo, con
$$a = 1$$
, $b = 1$: $2x = 3$

Añadiendo esta ecuación, obtendríamos un sistema incompatible.

Ejercicio nº 6.-

Dados los siguientes sistemas de ecuaciones:

a)
$$x-2y=0$$

 $3x-y=5$
 $x-y=1$
b) $3x-z=4$
 $y+3x=2$

Resuélvelos e interprétalos geométricamente.

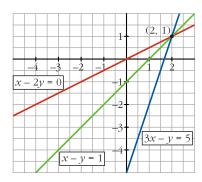
Solución:

a) Resolvemos el sistema por el método de Gauss:

$$\begin{pmatrix} 1 & -2 & | & 0 \\ 3 & -1 & | & 5 \\ 1 & -1 & | & 1 \end{pmatrix} \rightarrow \begin{array}{c} 1^a \\ 2^{\hat{a}} - 3 \cdot 1^{\hat{a}} \\ 3^{\hat{a}} - 1^{\hat{a}} \end{array} \begin{pmatrix} 1 & -2 & | & 0 \\ 0 & 5 & | & 5 \\ 0 & 1 & | & 1 \end{pmatrix} \rightarrow \begin{array}{c} 1^{\hat{a}} \\ 2^{\hat{a}} - 5 \cdot 3^{\hat{a}} \end{array} \begin{pmatrix} 1 & -2 & | & 0 \\ 0 & 0 & | & 0 \\ 0 & 1 & | & 1 \end{pmatrix} \rightarrow$$

El sistema es compatible determinado. La solución es (2, 1).

Geométricamente, representa tres rectas que se cortan en el punto (2, 1):



b) Se trata de un sistema de dos ecuaciones con tres incógnitas. Pasando la z al 2^{o} miembro en las dos ecuaicones, tenemos que:

$$3x = 4 + z$$

$$y = 2 - 3z$$

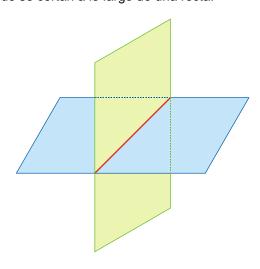
$$\Rightarrow x = \frac{4}{3} + \frac{1}{3}z$$

$$y = 2 - 3z$$

El sistema es compatible indeterminado. Sus soluciones son:

$$x = \frac{4}{3} + \frac{1}{3}\lambda$$
, $y = 2 - 3\lambda$, $z = \lambda$, con $\lambda \in \mathbb{R}$

Geométricamente, son dos planos que se cortan a lo largo de una recta:



Ejercicio nº 7.-

Resuelve los siguientes sistemas y haz una interpretación geométrica de los mismos:

a)
$$3x-2y=5$$

 $x+4y=4$
 $-x-2y=-3$

b)
$$x + 2z = 3$$

 $x + y = 2$

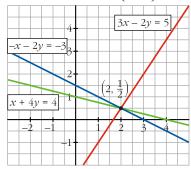
Solución:

a) Resolvemos el sistema por el método de Gauss:

$$\begin{pmatrix} 3 & -2 & | & 5 \\ 1 & 4 & | & 4 \\ -1 & -2 & | & -3 \end{pmatrix} \rightarrow \begin{array}{c} 2^{a} \begin{pmatrix} 1 & 4 & | & 4 \\ 3 & -2 & | & 5 \\ -1 & -2 & | & -3 \end{pmatrix} \rightarrow \begin{array}{c} 1^{a} & | & 1 & | & 4 \\ 3 & -2 & | & 5 \\ -1 & -2 & | & -3 \end{pmatrix} \rightarrow \begin{array}{c} 3 \cdot 1^{a} - 2^{a} \begin{pmatrix} 1 & 4 & | & 4 \\ 0 & 14 & | & 7 \\ 0 & 2 & | & 1 \end{pmatrix} \rightarrow \begin{array}{c} 1^{a} + 3^{a} & | & 1 & | & 4 \\ 0 & 14 & | & 7 \\ 0 & 2 & | & 1 \end{pmatrix}$$

El sistema es compatible determinado. Su solución es $\left(2, \frac{1}{2}\right)$.

Geométricamente, son tres rectas que se cortan en el punto $\left(2, \frac{1}{2}\right)$

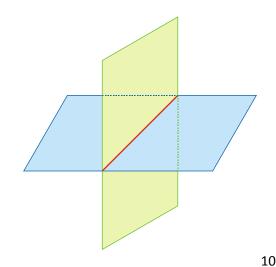


b) Se trata de un sistema de dos ecuaciones con tres incógnitas. Pasando la x al 2° miembro en las dos ecuaciones, tenemos que :

Por tanto, se trata de un sistema compatible indeterminado, cuyas soluciones son:

$$x = \lambda$$
, $y = 2 - \lambda$, $z = \frac{3}{2} - \frac{1}{2}\lambda$, con $\lambda \in \mathbb{R}$

Geométricamente, son dos planos que se cortan a lo largo de una recta:



Ejercicio nº 8.-

Resuelve e interpreta geométricamente el siguiente sistema de ecuaciones:

$$2x-y+z=3$$

$$x+2y-z=4$$

$$x-8y+5z=-6$$

Solución:

Resolvemos el sistema mediante el método de Gauss:

$$\begin{pmatrix} 2 & -1 & 1 & | & 3 \\ 1 & 2 & -1 & | & 4 \\ 1 & -8 & 5 & | & -6 \end{pmatrix} \rightarrow \begin{array}{c} 2^{\underline{a}} \begin{pmatrix} 1 & 2 & -1 & | & 4 \\ 2 & -1 & 1 & | & 3 \\ 1 & -8 & 5 & | & -6 \end{pmatrix} \rightarrow \begin{array}{c} 1^{\underline{a}} \begin{pmatrix} 1 & 2 & -1 & | & 4 \\ 0 & -5 & 3 & | & -5 \\ 0 & -10 & 6 & | & -10 \end{pmatrix} \rightarrow$$

$$x + 2y = 4 + z$$

$$-5y = -5 - 3z$$

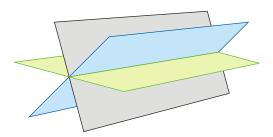
$$x = 4 + z - 2y = 4 + z - 2\left(1 + \frac{3}{5}z\right) = 2 - \frac{1}{5}z$$

$$y = 1 + \frac{3}{5}z$$

El sistema es compatible indeterminado. Sus soluciones son:

$$x=2-\frac{1}{5}\lambda$$
, $y=1+\frac{3}{5}\lambda$, $z=\lambda$, con $\lambda \in \mathbb{R}$

Geométricamente, representa tres planos que tienen una recta en común:



Ejercicio nº 9.-

Resuelve el siguiente sistema e interprétalo geométricamente:

$$x + y + z = 1$$

$$2x - 3z = 5$$

$$2y + 5z = 2$$

Solución:

Resolvemos el sistema mediante el método de Gauss:

$$\begin{pmatrix} 1 & 1 & 1 & | & 1 \\ 2 & 0 & -3 & | & 5 \\ 0 & 2 & 5 & | & 2 \end{pmatrix} \rightarrow 2^{\underline{a}} - 2 \cdot 1^{\underline{a}} \begin{pmatrix} 1 & 1 & 1 & | & 1 \\ 0 & -2 & -5 & | & 3 \\ 0 & 2 & 5 & | & 2 \end{pmatrix} \rightarrow 2^{\underline{a}} + 3^{\underline{a}} \begin{pmatrix} 1 & 1 & 1 & | & 1 \\ 0 & -2 & -5 & | & 3 \\ 0 & 0 & 0 & | & 5 \end{pmatrix} \rightarrow$$

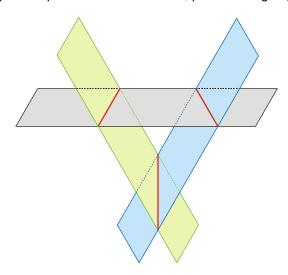
$$x+y+z=1$$

$$\rightarrow -2y-5z=3$$

$$0x+0y+0z=5$$

La última ecuación es imposible. El sistema es incompatible.

Geométricamente, representa tres planos que se cortan dos a dos, pero sin ningún punto común a los tres.



Ejercicio nº 10.-

Resuelve e interpreta geométricamente el sistema:

$$-x+3y-z=4$$

$$x+4y=5$$

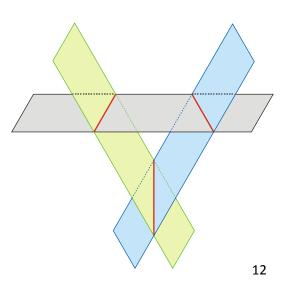
$$2x-6y+2z=3$$

Solución:

En primer lugar, lo resolvemos mediante el método de Gauss:

$$\begin{pmatrix} -1 & 3 & -1 & | & 4 \\ 1 & 4 & 0 & | & 5 \\ 2 & -6 & 2 & | & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1^{a} & -1 & 3 & -1 & | & 4 \\ 0 & 7 & -1 & | & 9 \\ 0 & 0 & 0 & | & 11 \end{pmatrix} \rightarrow \begin{pmatrix} -x+3y-z=4 \\ 7y-z=9 \\ 0x+0y+0z=11 \end{pmatrix}$$

La última ecuación es imposible. El sistema es incompatible. Geométricamente, el sistema representa tres planos que se cortan dos a dos, pero sin ningún punto común a los tres.



Ejercicio nº 11.-

Resuelve los siguientes sistemas, utilizando el método de Gauss:

a)
$$-3x + y + z = 1$$

 $x - 2y + z = 4$
 $-x + y - 3z = -7$
b) $2x - y + z = 3$
 $3x + y - z = -3$
 $x - 3y + 3z = 9$
 $2x + 4y - 4z = -12$

Solución:

La solución es (0, -1, 2).

Pasamos la z al 2º miembro:

$$x-3y = 9-3z$$
 $x = 3y+9-3z = 3(-3+z)+9-3z = 0$
 $y = -3+z$ $y = -3+z$

Las soluciones del sistema son:

$$x = 0$$
, $y = -3 + \lambda$, $z = \lambda$, con $\lambda \in P$

Ejercicio nº 12.-

Resuelve, por el método de Gauss, los siguientes sistemas de ecuaciones:

a)
$$2x+y-z=6$$

 $x-y+2z=-1$
 $-x+3y=1$
b) $x-y+z+t=0$
 $x+y+z-t=2$

Solución:

a)
$$\begin{pmatrix} 2 & 1 & -1 & | & 6 \\ 1 & -1 & 2 & | & -1 \\ -1 & 3 & 0 & | & 1 \end{pmatrix}$$
 $\Rightarrow 1^{a} \begin{pmatrix} 2 & 1 & -1 & 2 & | & -1 \\ 2 & 1 & -1 & | & 6 \\ -1 & 3 & 0 & | & 1 \end{pmatrix}$
 $\Rightarrow 1^{a} \begin{pmatrix} 1 & -1 & 2 & | & -1 \\ 2 & 1 & -1 & | & 6 \\ -1 & 3 & 0 & | & 1 \end{pmatrix}$
 $\Rightarrow 2^{a} - 2 \cdot 1^{a} \begin{pmatrix} 0 & 3 & -5 & | & 8 \\ 0 & 2 & 2 & | & 0 \end{pmatrix}$
 $\Rightarrow 1^{a} \begin{pmatrix} 1 & -1 & 2 & | & -1 \\ 0 & 1 & 1 & | & 0 \\ 0 & 3 & -5 & | & 8 \end{pmatrix}$
 $\Rightarrow 1^{a} \begin{pmatrix} 1 & -1 & 2 & | & -1 \\ 0 & 1 & 1 & | & 0 \\ 0 & 3 & -5 & | & 8 \end{pmatrix}$
 $\Rightarrow 2^{a} \begin{pmatrix} 1 & -1 & 2 & | & -1 \\ 0 & 1 & 1 & | & 0 \\ 0 & 0 & -8 & | & 8 \end{pmatrix}$
 $\Rightarrow x - y + 2z = -1$
 $\Rightarrow 2^{a} \begin{pmatrix} 1 & -1 & 2 & | & -1 \\ 0 & 1 & 1 & | & 0 \\ 0 & 0 & -8 & | & 8 \end{pmatrix}$
 $\Rightarrow y + z = 0$
 $\Rightarrow x - y + 2z = -1$
 $\Rightarrow x - y + 2z = -1$

La solución del sistema es (2, 1, -1).

Las soluciones del sistema son:

$$x = 2$$
, $y = 1 + \lambda$, $z = -1$, $t = \lambda$, con $\lambda \in P$

Ejercicio nº 13.-

Resuelve, por el método de Gauss, los sistemas:

a)
$$-3x + y - z = -4$$

 $5x - 2y + z = 6$
 $-x + y + 3z = 0$
b) $x + 2y + z + t = 3$
 $-x + y + 2t = -1$
 $-x + 7y + 2z + 8t = 1$

Solución:

a)
$$\begin{pmatrix} -3 & 1 & -1 & | & -4 \ 5 & -2 & 1 & | & 6 \ -1 & 1 & 3 & | & 0 \end{pmatrix}$$

$$\rightarrow 1^{a} \begin{pmatrix} -1 & 1 & 3 & | & 0 \ -3 & 1 & -1 & | & -4 \ 5 & -2 & 1 & | & 6 \end{pmatrix} \rightarrow 1^{a} \begin{pmatrix} -1 & 1 & 3 & | & 0 \ 0 & 1 & 3 & | & 0 \ 0 & -2 & -10 & | & -4 \ 0 & 3 & 16 & | & 6 \end{pmatrix} \rightarrow 2^{a} : (-2) \begin{pmatrix} -1 & 1 & 3 & | & 0 \ 0 & 1 & 5 & | & 2 \ 0 & 3 & 16 & | & 6 \end{pmatrix} \rightarrow 1^{a} \begin{pmatrix} -1 & 1 & 3 & | & 0 \ 0 & 1 & 5 & | & 2 \ 0 & 3 & 16 & | & 6 \end{pmatrix} \rightarrow 1^{a} \begin{pmatrix} -1 & 1 & 3 & | & 0 \ 0 & 1 & 5 & | & 2 \ 0 & 3 & 16 & | & 6 \end{pmatrix} \rightarrow 1^{a} \begin{pmatrix} -1 & 1 & 3 & | & 0 \ 0 & 1 & 5 & | & 2 \ 0 & 3 & 16 & | & 6 \end{pmatrix} \rightarrow 1^{a} \begin{pmatrix} -1 & 1 & 3 & | & 0 \ 0 & 1 & 5 & | & 2 \ 0 & 3 & 16 & | & 6 \end{pmatrix} \rightarrow 1^{a} \begin{pmatrix} -1 & 1 & 3 & | & 0 \ 0 & 1 & 5 & | & 2 \ 0 & 3 & 16 & | & 6 \end{pmatrix} \rightarrow 1^{a} \begin{pmatrix} -1 & 1 & 3 & | & 0 \ 0 & 1 & 5 & | & 2 \ 0 & 3 & 16 & | & 6 \end{pmatrix} \rightarrow 1^{a} \begin{pmatrix} -1 & 1 & 3 & | & 0 \ 0 & 1 & 5 & | & 2 \ 0 & 3 & 16 & | & 6 \end{pmatrix} \rightarrow 1^{a} \begin{pmatrix} -1 & 1 & 3 & | & 0 \ 0 & 1 & 5 & | & 2 \ 0 & 3 & 16 & | & 6 \end{pmatrix} \rightarrow 1^{a} \begin{pmatrix} -1 & 1 & 3 & | & 0 \ 0 & 1 & 5 & | & 2 \ 0 & 3 & 16 & | & 6 \end{pmatrix} \rightarrow 1^{a} \begin{pmatrix} -1 & 1 & 3 & | & 0 \ 0 & 1 & 5 & | & 2 \ 0 & 3 & 16 & | & 6 \end{pmatrix} \rightarrow 1^{a} \begin{pmatrix} -1 & 1 & 3 & | & 0 \ 0 & 1 & 5 & | & 2 \ 0 & 3 & 16 & | & 6 \end{pmatrix} \rightarrow 1^{a} \begin{pmatrix} -1 & 1 & 3 & | & 0 \ 0 & 1 & 5 & | & 2 \ 0 & 3 & 16 & | & 6 \end{pmatrix} \rightarrow 1^{a} \begin{pmatrix} -1 & 1 & 3 & | & 0 \ 0 & 1 & 5 & | & 2 \ 0 & 3 & 16 & | & 6 \end{pmatrix} \rightarrow 1^{a} \begin{pmatrix} -1 & 1 & 3 & | & 0 \ 0 & 1 & 5 & | & 2 \ 0 & 3 & 16 & | & 6 \end{pmatrix} \rightarrow 1^{a} \begin{pmatrix} -1 & 1 & 3 & | & 0 \ 0 & 1 & 5 & | & 2 \ 0 & 3 & 16 & | & 6 \end{pmatrix} \rightarrow 1^{a} \begin{pmatrix} -1 & 1 & 3 & | & 0 \ 0 & 1 & 5 & | & 2 \ 0 & 3 & 16 & | & 6 \end{pmatrix} \rightarrow 1^{a} \begin{pmatrix} -1 & 1 & 3 & | & 0 \ 0 & 1 & 5 & | & 2 \ 0 & 3 & 16 & | & 6 \end{pmatrix} \rightarrow 1^{a} \begin{pmatrix} -1 & 1 & 3 & | & 0 \ 0 & 1 & 5 & | & 2 \ 0 & 3 & 16 & | & 6 \end{pmatrix} \rightarrow 1^{a} \begin{pmatrix} -1 & 1 & 3 & | & 0 \ 0 & 1 & 5 & | & 2 \ 0 & 3 & 16 & | & 6 \end{pmatrix} \rightarrow 1^{a} \begin{pmatrix} -1 & 1 & 3 & | & 0 \ 0 & 1 & 5 & | & 2 \ 0 & 3 & 16 & | & 6 \end{pmatrix} \rightarrow 1^{a} \begin{pmatrix} -1 & 1 & 3 & | & 0 \ 0 & 1 & 5 & | & 2 \ 0 & 3 & 16 & | & 6 \end{pmatrix} \rightarrow 1^{a} \begin{pmatrix} -1 & 1 & 3 & | & 0 \ 0 & 1 & 5 & | & 2 \ 0 & 3 & 16 & | & 6 \end{pmatrix} \rightarrow 1^{a} \begin{pmatrix} -1 & 1 & 3 & | & 0 \ 0 & 1 & 5 & | & 2 \ 0 & 3 & 16 & | & 6 \end{pmatrix} \rightarrow 1^{a} \begin{pmatrix} -1 & 1 & 3 & | & 0 \ 0 & 1 & | & 1 \end{pmatrix} \rightarrow 1^{a} \begin{pmatrix} -1 & 1 &$$

b)
$$\begin{pmatrix} 1 & 2 & 1 & 1 & 3 \\ -1 & 1 & 0 & 2 & -1 \\ -1 & 7 & 2 & 8 & 1 \end{pmatrix}$$
 $\rightarrow 2^{\frac{a}{2}} + 1^{\frac{a}{2}} \begin{pmatrix} 1 & 2 & 1 & 1 & 3 \\ 0 & 3 & 1 & 3 & 2 \\ 0 & 9 & 3 & 9 & 4 \end{pmatrix}$ \rightarrow

$$\begin{vmatrix}
 1^{\frac{a}{2}} & 1 & 1 & 3 \\
 4^{\frac{a}{2}} & 1 & 1 & 3 \\$$

La última ecuación es imposible. Por tanto, el sistema es incompatible.

Ejercicio nº 14.-

Resuelve estos sistemas, mediante el método de Gauss:

a) 5x-y+3z=-6 x+3y-z=10 2x-y+4z=-2b) 2x-y+z=5 3x+2y=1 -x+4y-2z=-9 6x+11y-3z=-11

Solución:

a)
$$\begin{pmatrix} 5 & -1 & 3 & | & -6 \ 1 & 3 & -1 & | & 10 \ 2 & -1 & 4 & | & -2 \end{pmatrix}$$
 $\rightarrow \begin{array}{c} 2^{a} \begin{pmatrix} 1 & 3 & -1 & | & 10 \ 5 & -1 & 3 & | & -6 \ 2 & -1 & 4 & | & -2 \end{pmatrix}$ $\rightarrow \begin{array}{c} 1^{a} \begin{pmatrix} 1 & 3 & -1 & | & 10 \ 0 & -16 & 8 & | & -56 \ 0 & -7 & 6 & | & -22 \end{pmatrix}$ $\rightarrow \begin{array}{c} 3^{a} - 2 \cdot 1^{a} \begin{pmatrix} 1 & 3 & -1 & | & 10 \ 0 & -16 & 8 & | & -56 \ 0 & -7 & 6 & | & -22 \end{pmatrix}$

$$\begin{array}{c} x + 3y - z = 10 \\ \rightarrow & 2y - z = 7 \\ 5z = 5 \end{array} \begin{array}{c} x = 10 - 3y + z = 10 - 12 + 1 = -1 \\ \rightarrow & 2y = 7 + z = 7 + 1 = 8 \rightarrow y = 4 \\ z = 1 \end{array} \end{array}$$
 La solución es $(-1, 4, 1)$.

$$\rightarrow \begin{array}{c} -x+4y-2z=-9 \\ 7y-3z=-13 \end{array}$$
 Pasamos la z al 2º miembro:

$$\Rightarrow x = 4y + 9 - 2z = 4\left(\frac{-13}{7} + \frac{3}{7}z\right) + 9 - 2z = \frac{-52}{7} + \frac{12}{7}z + 9 - 2z = \frac{11}{7} - \frac{2}{7}z$$

Las soluciones del sistema son:

$$x = \frac{11}{7} - \frac{2}{7}\lambda$$
, $y = \frac{-13}{7} + \frac{3}{7}\lambda$, $z = \lambda$, con $\lambda \in R$

Ejercicio nº 15.-

a)
$$4x + y - 2z = -3$$

 $3x - y + 4z = -2$
 $-x + y + z = 5$
b) $-x + y - z = -2$
 $x - y + 2z = 4$
 $x + z + t = 3$
 $x + 2z + t = 1$

Solución:

a)
$$\begin{pmatrix} 4 & 1 & -2 & | & -3 \\ 3 & -1 & 4 & | & -2 \\ -1 & 1 & 1 & | & 5 \end{pmatrix}$$
 $\rightarrow 1^{a} \begin{pmatrix} -1 & 1 & 1 & | & 5 \\ 4 & 1 & -2 & | & -3 \\ 3 & -1 & 4 & | & -2 \end{pmatrix}$ \rightarrow

La solución es (-1, 3, 1).

La 2ª y la 4ª son ecuaciones contradictorias. Por tanto, el sistema es incompatible.

Ejercicio nº 16.-

Discute, y resuelve cuando sea posible, el siguiente sistema de ecuaciones:

$$x-5y-z=-4$$

$$x-y+z=6$$

$$3x-5y+az=31$$

Solución:

$$\begin{pmatrix} 1 & -5 & -1 & | & -4 \\ 1 & -1 & 1 & | & 6 \\ 3 & -5 & a & | & 31 \end{pmatrix} \rightarrow \begin{pmatrix} 2^{a} \begin{pmatrix} 1 & -1 & 1 & | & 6 \\ 1 & -5 & -1 & | & -4 \\ 3^{a} & -5 & a & | & 31 \end{pmatrix} \rightarrow \begin{pmatrix} 1^{a} & \begin{pmatrix} 1 & -1 & 1 & | & 6 \\ 0 & -4 & -2 & | & -10 \\ 0 & -2 & a-3 & | & 13 \end{pmatrix} \rightarrow$$

- Si a = 2, quedaría 0z = 18. Por tanto, el sistema sería incompatible.
- Si a ≠ 2, el sistema sería incompatible determinado. Lo resolvemos:

Para cada valor de $a \neq 2$, tenemos un sistema de ecuaciones diferente (hay infinitos sistemas). Cada uno de ellos es compatible determinado, con solución:

$$x = \frac{17a - 88}{2a - 4}$$
, $y = \frac{5a - 28}{2a - 4}$, $z = \frac{18}{a - 2}$

Ejercicio nº 17.-

Discute en función del parámetro, y resuelve cuando sea posible:

$$x+5y-6z=19$$

$$3x-6y+az=-16$$

$$x -z=1$$

Solución:

$$\begin{pmatrix}
1 & 5 & -6 & | & 19 \\
3 & -6 & a & | & -16 \\
1 & 0 & -1 & | & 1
\end{pmatrix}$$

$$3^{a}\begin{pmatrix} 1 & 0 & -1 & | & 1 \\
1 & 5 & -6 & | & 19 \\
3^{a} & -6 & a & | & -16
\end{pmatrix}$$

$$3^{a}\begin{pmatrix} 1 & 0 & -1 & | & 1 \\
0 & 5 & -5 & | & 18 \\
0 & -6 & a+3 & | & -19
\end{pmatrix}$$

$$\rightarrow$$

• Si $5^a - 15 = 0$, es decir, si a = 3, la 3^a ecuación quedará 0z = 13, que es imposible.

Por tanto, sería incompatible.

• Si $a \neq 3$, el sistema sería compatible determinado. Lo resolvemos:

$$x-z=1$$

$$5y-5z=18$$

$$5y=18+5z=18+5 \cdot \frac{13}{5a-15} = \frac{5a-15+13}{5a-15} = \frac{5a-2}{5a-15}$$

$$5y=18+5z=18+5 \cdot \frac{13}{5(a-3)} = 18 + \frac{13}{a-3} = \frac{18a-54+13}{a-3} = \frac{18a-41}{a-3} \rightarrow y = \frac{18a-41}{5a-15}$$

$$(5a-15)z=13$$

$$z=\frac{13}{5a-15}$$

Para cada valor de $a \neq 3$, tenemos un sistema diferente (hay infinitos sistemas). Cada uno de ellos tiene como solución única:

$$x = \frac{5a-2}{5a-15}$$
, $y = \frac{18a-41}{5a-15}$, $z = \frac{13}{5a-15}$

Ejercicio nº 18.-

Discute, y resuelve cuando sea posible, el sistema:

$$2x+3y+5z=8$$

$$2x+2y+mz=6$$

$$x+y+2z=3$$

Solución:

$$\begin{pmatrix} 2 & 3 & 5 & | & 8 \\ 2 & 2 & m & | & 6 \\ 1 & 1 & 2 & | & 3 \end{pmatrix} \rightarrow 1^{a} \begin{pmatrix} 1 & 1 & 2 & | & 3 \\ 2 & 3 & 5 & | & 8 \\ 2 & 2 & m & | & 6 \end{pmatrix} \rightarrow 2^{a} - 2 \cdot 1^{a} \begin{pmatrix} 1 & 1 & 2 & | & 3 \\ 0 & 1 & 1 & | & 2 \\ 0 & 0 & m - 4 & | & 0 \end{pmatrix}$$

• Si m = 4, el sistema sería compatible indeterminado. Lo resolvemos:

$$x + y + 2z = 3$$
 $x + y = 3 - 2z$ $x = 3 - 2z - y = 3 - 2z - 2 + z = 1 - z$
 $y + z = 2$ $y = 2 - z$ $y = 2 - z$

Las soluciones serían:

$$x = 1 - \lambda$$
, $y = 2 - \lambda$, $z = \lambda$, con $\lambda \in \mathbb{R}$

Si m ≠ 4, el sistema sería compatible determinado. Quedaría:

$$x+y+2z=3$$
 $x=3-y=3-2=1$
 $y+z=2$ $y=2$
 $(m-4)z=0$ $z=0$

Para cada valor de $m \neq 4$, tenemos un sistema diferente (hay infinitos sistemas). Cada uno de ellos tiene como solución única (1, 2, 0).

Ejercicio nº 19.-

Dado el siguiente sistema de ecuaciones, discútelo y resuélvelo para los valores de m que lo hacen compatible:

$$2x-y-17z=0$$

$$x+2y+mz=5$$

$$x -5z=1$$

Solución:

$$\begin{pmatrix}
2 & -1 & -17 & | & 0 \\
1 & 2 & m & | & 5 \\
1 & 0 & -5 & | & 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
3^{a} & 1 & 0 & -5 & | & 1 \\
2 & -1 & -17 & | & 0 \\
1 & 2 & m & | & 5
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1^{a} & 1 & 0 & -5 & | & 1 \\
0 & -1 & -7 & | & -2 \\
0 & 2 & m+5 & | & 4
\end{pmatrix}
\rightarrow$$

• Si m = 9, el sistema quedaría:

$$x-5z=1$$

$$y+7z=2$$

$$x=1+5z$$

$$y=2-7z$$

Sería compatible indeterminado, con soluciones:

$$x = 1 + 5\lambda$$
, $y = 2 - 7\lambda$, $z = \lambda$, siendo $\lambda \in P$

• Si $m \neq 9$, el sistema sería compatible determinado. Lo resolvemos:

$$x-5z=1
y+7z=2
(m-9)z=0
 x=1
y=2
z=0$$

Para cada valor de $m \neq 9$, tendríamos un sistema de ecuaciones diferente (hay infinitos sistemas). Cada uno de ellos tiene como solución única (1, 2, 0).

Ejercicio nº 20.-

Discute el siguiente sistema en función del parámetro a, y resuélvelo cuando sea posible:

$$2x-5y+(a+5)z=0$$

$$3x+3y - z=0$$

$$3x+4y +6z=0$$

Solución:

$$\begin{pmatrix} 2 & -5 & a+5 & | & 0 \\ 3 & 3 & -1 & | & 0 \\ 3 & 4 & 6 & | & 0 \end{pmatrix} \rightarrow 3^{\frac{a}{2}} \begin{pmatrix} 3 & 3 & -1 & | & 0 \\ 3 & 4 & 6 & | & 0 \\ 2 & -5 & a+5 & | & 0 \end{pmatrix} \rightarrow$$

- Si 3a+164=0, es decir, si $a=\frac{-164}{3}$, el sistema queda:
 - 3x+3y-z=0y+7z=0 Pasamos la z al 2° miembro:

$$3x+3y = z
y = -7z$$

$$x = \frac{z-3y}{3} = \frac{z+21z}{3} = \frac{22z}{3}$$

Sería compatible indeterminado, con soluciones:

$$x = \frac{22}{3}\lambda$$
, $y = -7\lambda$, $z = \lambda$, con $\lambda \in R$

• Si $a \neq \frac{-164}{3}$, sería compatible determinado. Su única solución sería (0, 0, 0).

Ejercicio nº 21.-

Disponemos de tres lingotes de distintas aleaciones de tres metales A, B y C. El primer lingote contiene 20 g del metal A, 20 g del B y 60 del C. El segundo contiene 10 g de A, 40 g de B y 50 g de C. El tercero contiene 20 g de A, 40 g de B y 40 g de C. Queremos elaborar, a partir de estos lingotes, uno nuevo que contenga 15 g de A, 35 g de B y 50 g de C.

¿Cuántos gramos hay que coger de cada uno de los tres lingotes?

Solución:

Resumimos en una tabla los datos que nos dan:

	Α	В	С	PESO TOTAL
1 ^{er} LINGOTE	20 g	20 g	60 g	100 g
2° LINGOTE	10 g	40 g	50 g	100 g
3 ^{er} LINGOTE	20 g	40 g	40 g	100 g

Llamamos x a los gramos que tenemos que coger del primer lingote, y a los del segundo lingote y z a los del tercero.

Como queremos conseguir 15 g de A, 35 g de B y 50 g de C, tendremos que:

$$0.2x+0.1y+0.2z=15$$

$$0.2x+0.4y+0.4z=35$$

$$0.6x+0.5y+0.4z=50$$

$$2x+y+2z=150$$

$$2x+4y+4z=350$$

$$6x+5y+4z=500$$

Resolvemos el sistema mediante el método de Gauss:

$$\begin{pmatrix}
2 & 1 & 2 & | & 150 \\
2 & 4 & 4 & | & 350 \\
6 & 5 & 4 & | & 500
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1^{a} \\
2^{a} - 1^{a} \\
0^{a} \\
0^{a} - 3 \cdot 1^{a}
\end{pmatrix}
\begin{pmatrix}
2 & 1 & 2 & | & 150 \\
0 & 3 & 2 & | & 200 \\
0 & 2 & -2 & | & 50
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1^{a} \\
2^{a} \\
0^{a} \\
0^{a} - 2 \cdot 2^{a}
\end{pmatrix}
\begin{pmatrix}
2 & 1 & 2 & | & 150 \\
0 & 3 & 2 & | & 200 \\
0 & 0 & -10 & | & -250
\end{pmatrix}
\rightarrow$$

$$2x + y + 2z = 150$$

$$\Rightarrow 3y + 2z = 200$$

$$y = \frac{200 - 2z}{3} = \frac{150 - 50 - 50}{2} = 25$$

$$-10z = -250$$

$$z = 25$$

Por tanto, habrá que coger 25 g del primer lingote, 50 g del segundo y 25 g del tercero.

Ejercicio nº 22.-

Por un rotulador, un cuaderno y una carpeta se pagan 3,56 euros. Se sabe que el precio del cuaderno es la mitad del precio del rotulador y que, el precio de la carpeta es igual al precio del cuaderno más el 20% del precio del rotulador. Calcula los precios que marcaba cada una de las cosas, sabiendo que sobre esos precios se ha hecho el 10% de descuento.

Solución:

Tenemos que:

	ROTULADOR	CUADERNO	CARPETA
PRECIO SIN DESCUENTO	х	У	Z
PRECIO CON DESCUENTO	0,9 x	0,9 <i>y</i>	0,9 z

Planteamos el sistema con los datos que nos dan:

$$\begin{cases}
0.9x + 0.9y + 0.9z = 3.56 \\
y = \frac{x}{2} \\
z = y + 0.2x
\end{cases}$$

$$z = \frac{x}{2} + 0.2x = 0.5x + 0.2x = 0.7x$$

$$0.9x + 0.9 \cdot \frac{x}{2} + 0.9 \cdot 0.7x = 3.56 \rightarrow 0.9x + 0.45x + 0.63x = 3.56 \rightarrow 1.98x = 3.56$$

$$y = \frac{x}{2} = \frac{1,80}{2} = 0,90$$

$$z = 0.7x = 1.26$$

Por tanto, el rotulador marcaba 1,80 euros, el cuaderno, 0,90 euros y, la carpeta, 1,26 euros.

Ejercicio nº 23.-

Una compañía fabricó tres tipos de muebles: sillas, mecedoras y sofás. Para la fabricación de cada uno de estos tipos necesitó la utilización de ciertas unidades de madera, plástico y aluminio tal y como se indica en la tabla siguiente. La compañía tenía en existencia 400 unidades de madera, 600 unidades de plástico y 1 500 unidades de aluminio. Si la compañía utilizó todas sus existencias, ¿cuántas sillas, mecedoras y sofás fabricó?

	MADERA	PLÁSTICO	ALUMINIO
SILLA	1 unidad	1 unidad	2 unidades
MECEDORA	1 unidad	1 unidad	3 unidades
SOFÁ	1 unidad	2 unidades	5 unidades

Solución:

Llamamos x al número de sillas fabricadas, y al de mecedoras y z al de sofás. Así, teniendo en cuenta los datos que nos dan, tenemos que:

Madera
$$\rightarrow x+y+z=400$$

Plástico $\rightarrow x+y+2z=600$
Aluminio $\rightarrow 2x+3y+5z=1500$

Resolvemos el sistema mediante el método de Gauss:

$$\begin{pmatrix}
1 & 1 & 1 & | & 400 \\
1 & 1 & 2 & | & 600 \\
2 & 3 & 5 & | & 1500
\end{pmatrix}
\rightarrow
\begin{vmatrix}
1^{a} & | & 1 & 1 & | & 400 \\
0 & 0 & 1 & | & 200 \\
0 & 1 & 3 & | & 700
\end{pmatrix}
\rightarrow$$

$$x + y + z = 400 \\
x = 400 - y - z = 400 - 100 - 200 = 100 \\
y = 700 - 3z = 700 - 600 = 100 \\
y + 3z = 700$$

$$z = 200$$

$$z = 200$$

Por tanto, se fabricaron 100 sillas, 100 mecedoras y 200 sofás.

Ejercicio nº 24.-

En una residencia de estudiantes se compran semanalmente 110 helados de distintos sabores: vainilla, chocolate y nata. El presupuesto destinado para esta compra es de 540 euros y el precio de cada helado es de 4 euros el de vainilla, 5 euros el de chocolate y 6 euros el de nata. Conocidos los gustos de los estudiante, se sabe que entre helados de chocolate y de nata se han de comprar el 20% más que de vainilla.

a) Plantea un sistema de ecuaciones lineales para calcular cuántos helados de cada sabor se compran a la semana.

b) Resuelve, mediante el método de Gauss, el sistema planteado en el apartado anterior.

Solución:

a) Llamamos x al número de helados de vainilla que se compran semanalmente, y al de helados de chocolate, y al de helados de nata.

Compran 110 helados en total
$$\rightarrow x+y+z=110$$
 $x+y+z=110$ Precio total 540 euros $\rightarrow 4x+5y+6z=540$ $4x+5y+6z=540$ Chocolate y nata = 20% más que vainilla $\rightarrow y+z=1,2x$ $12x-10y-10z=0$

b)
$$\begin{pmatrix} 1 & 1 & 1 & | & 110 \\ 4 & 5 & 6 & | & 540 \\ 12 & -10 & -10 & | & 0 \end{pmatrix}$$
 \rightarrow $2^{a} - 4 \cdot 1^{a} \begin{pmatrix} 1 & 1 & 1 & | & 110 \\ 0 & 1 & 2 & | & 100 \\ 0 & -22 & -22 & | & -1320 \end{pmatrix}$ \rightarrow

$$x + y + z = 110$$

$$y + 2z = 100$$

$$z = 40$$

$$x = 110 - y - z = 110 - 20 - 40 = 50$$

$$y = 100 - 2z = 100 - 80 = 20$$

$$z = 40$$

Por tanto, se compran 50 helados de vainilla, 20 de chocolate y 40 de nata.

Ejercicio nº 25.-

En una reunión hay 22 personas, entre hombres, mujeres y niños. El doble del número de mujeres más el triple del número de niños, es igual al doble del número de hombres.

- a) Con estos datos, ¿se puede saber el número de hombres que hay?
- b) Si, además, se sabe que el número de hombres es el doble del de mujeres, ¿cuántos hombres, mujeres y niños hay?

Solución:

a) Llamemos x al número de hombres, y al de mujeres y z al de niños.

Como hay 22 personas, tenemos que:

$$x + y + z = 22$$

Con el otro dato, planteamos otra ecuación:

$$2y + 3z = 2x$$

Solo con estos datos no podemos saber el número de hombres (ni el de mujeres, ni el de niños) que hay. Es un sistema compatible indeterminado; como tenemos tres incógnitas, para que pueda ser compatible determinado, necesitamos otra ecuación.

b) Añadiendo una tercera ecuación con el dato que nos dan, planteamos el sistema:

Por tanto, hay 12 hombres, 6 mujeres y 4 niños.